Outline

• Syllabus
• Probabilistic Reasoning
• Structure in Probabilistic Models
• Incorporating Evidence
• Belief Networks
• Theano: A quick look
• Homework
<table>
<thead>
<tr>
<th>Week</th>
<th>Syllabus</th>
<th>Readings</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Intro</td>
<td>Belief networks I</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ch 1, 3</td>
</tr>
<tr>
<td>2</td>
<td>Belief Networks II</td>
<td>Graphical Models I</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ch 3, 4</td>
</tr>
<tr>
<td>3</td>
<td>Graphical Models II</td>
<td>Exact Inference (Trees) I</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ch 4, 5</td>
</tr>
<tr>
<td>4</td>
<td>Exact Inference (Trees) II</td>
<td>Exact Inference (Junction Tree)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ch 5, 6</td>
</tr>
<tr>
<td>5</td>
<td>Approximate Inf (Sampling)</td>
<td>Approximate Inference (Samp)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ch 27</td>
</tr>
<tr>
<td>6</td>
<td>Approximate Inf (Variational)</td>
<td>Approximate Inference (Variational)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ch 28</td>
</tr>
<tr>
<td>7</td>
<td>Learning as inference</td>
<td>Learning with hidden variables</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ch 9, 11</td>
</tr>
<tr>
<td>8</td>
<td>Single Neurons</td>
<td>Feedforward Neural Networks</td>
</tr>
<tr>
<td>9</td>
<td>Autoencoders</td>
<td>Stacked Denoising Autoencoders</td>
</tr>
<tr>
<td>10</td>
<td>Hopfield Networks / Boltzmann</td>
<td>Restricted Boltzmann Machines</td>
</tr>
<tr>
<td>11</td>
<td>Deep Boltzmann Machines</td>
<td>Deep Belief Networks</td>
</tr>
<tr>
<td>12</td>
<td>Convolutional Neural Networks</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Applications</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Applications</td>
<td></td>
</tr>
</tbody>
</table>
Probabilistic Reasoning

• Characterise the problem space by identifying:

 • Identify variables and their domains (e.g. X in \{0,1\})
 • The joint distribution (e.g. p(X,Y,Z))
 • Perform inference on joint distribution
At work, Bob’s boss is angry because he’s underperforming. Bob has a headache. Possibly Bob is just demotivated, possibly he went to a party last night and is exhausted. What is the probability that he went to a party last night?
Identify Variables and Domains

- \(H \) in \(\{t, f\} \) : Bob has a headache
- \(P \) in \(\{t, f\} \) : Bob went to a party
- \(D \) in \(\{t, f\} \) : Bob is demotivated
- \(U \) in \(\{t, f\} \) : Bob is underperforming
- \(A \) in \(\{t, f\} \) : The boss is angry
Define Joint Distribution

- \(P(H,P,A,U,D) \) fully characterizes the problem
- To answer our question, calculate \(p(P=t \mid H=t, A=t) \)

\[
p(P = t \mid H = t, A = t) = \frac{p(P = t, H = t, A = t)}{p(H = t, A = t)}
\]

\[
= \frac{\sum_{U,D} p(P = t, H = t, A = t, U, D)}{\sum_{P,U,D} p(P, H = t, A = t, U, D)}
\]
Inference

All the ways in which Bob has a headache, the Boss is angry AND Bob went to a party

\[\frac{\sum_{U,D} p(P = t, H = t, A = t, U, D)}{\sum_{P,U,D} p(P, H = t, A = t, U, D)} \]

All the ways in which Bob has a headache and the Boss is angry.
There's just one problem...

- How do we define the joint distribution?

- We could explicitly enumerate each case:

 - $p(H=f,P=f,A=f,U=f,D=f) = \ldots$

 - $P(H=f,P=f,A=f,U=f,D=t) = \ldots$

- Difficult to put down a sensible number

- Exponential growth in number of variables
Structured Models

• Influence between variables often indirect

• For example:
 • The boss is angry because Bob is underperforming, not because Bob might have gone to a party.

• Captured using conditional independence:

\[p(A|P, H, U, D) = P(A|U) \]

• Given we know that Bob is underperforming or not, we know the probability that the boss will be angry.
However ...

- $p(H,P,A,U,D)$ isn’t conditioned on anything :(.
- But we know $p(X,Y) = p(X|Y)p(Y)$, so

Note: This is just one possible order!
Independence Assumptions

\[p(A|H,P,U,D) = p(A|U) \]

Bob’s boss is only angry because Bob is underperforming, not for any other reason.
Independence Assumptions

\[p(A|U) \ p(U|H,P,D) \ p(H|P,D) \ p(P|D) \ p(D) \]

Bob’s underperforming is either because he went to the party and is tired, or that he is demotivated.

Alternative choice: The headache might also play a role.

\[p(U|H,P,D) = p(U|P,D) \]
Independence Assumptions

\[p(A|U) \ p(U|P,D) \ p(H|P,D) \ p(P|D) \ p(D) \]

Bob’s headache is only dependent on whether or not he went to the party.

\[p(H|P,D) = p(H|P) \]
Independence Assumptions

\[p(A|U) \quad p(U|P,D) \quad p(H|P) \quad p(P|D) \quad p(D) \]

Bob’s headache is only dependent on whether or not he went to the party.

\[p(P|D) = p(P) \]

A wild prior appears!
Independence Assumptions

\[p(A|U) \ p(U|P,D) \ p(H|P) \ p(P) \ p(D) \]

Whether or not Bob is demotivated is prior to this situation. Nothing to do, since \(p(D) \) is already a prior.
Belief Networks

\[p(A|H,P,U,D) \quad p(U|H,P,D) \quad p(H|P,D) \quad p(P|D) \quad p(D) \]

Directed Acyclic Graph (DAG)
Each edge is directed, no path following the arrows crosses the same node twice
Belief Networks

\[p(A|H,P,U,D) \] \[p(U|H,P,D) \] \[p(H|P,D) \] \[p(P|D) \] \[p(D) \]

\[p(A|H,P,U,D) = p(A|U) \]
Belief Networks

\[p(A|U) \ p(U|H,P,D) \ p(H|P,D) \ p(P|D) \ p(D) \]

\[p(U|H,P,D) = p(U|P,D) \]
Belief Networks

\[p(A|U) \quad p(U|P,D) \quad p(H|P,D) \quad p(P|D) \quad p(D) \]

\[p(H|P,D) = p(H|P) \]
Belief Networks

\[
p(A|U) \quad p(U|P,D) \quad p(H|P) \quad p(P|D) \quad p(D)
\]

\[
p(P|D) = p(P)
\]
Belief Networks

$p(A|U) \ p(U|P,D) \ p(H|P) \ p(P) \ p(D)$
Belief Networks

\[p(A|U) \quad p(U|P,D) \quad p(H|P) \quad p(P) \quad p(D) \]
Belief Networks

\[p(A|U) \quad p(U|P,D) \quad p(H|P) \quad p(P) \quad p(D) \]
BN Specification

Conditional Probability Tables (CPDs)

| \(P(A|U) \) | \(U=F \) | \(U=T \) |
|--------------|----------|----------|
| A=F | | |
| A=T | | |

\(p(A|U) \) \(p(U|P,D) \) \(p(H|P) \) \(p(P) \) \(p(D) \)
BN Specification

Conditional Probability Tables (CPDs)

| P(A|U) | U=F | U=T |
|-------|-----|-----|
| A=F | | |
| A=T | 0.5 | |

Grouchy!
BN Specification

Conditional Probability Tables (CPDs)

| P(A|U) | U=F | U=T |
|--------|-----|-----|
| A=F | | |
| A=T | 0.5 | 0.95|

Rage!
BN Specification

Conditional Probability Tables (CPDs)

| P(A|U) | U=F | U=T |
|--------|-----|-----|
| A=F | 0.5 | 0.05|
| A=T | 0.5 | 0.95|

Redundant…
BN Specification

Conditional Probability Tables (CPDs)

| $P(U|P,D)$ | $P=F$ | $P=T$ | $P=F$ | $P=T$ |
|------------|-------|-------|-------|-------|
| $D=F$ | | | | |
| $D=T$ | | | | |

<table>
<thead>
<tr>
<th>$U=F$</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>$U=T$</th>
</tr>
</thead>
</table>
BN Specification

Conditional Probability Tables (CPDs)

| P(U|P,D) | P=F | P=T | P=F | P=T |
|---------|-----|-----|-----|-----|
| D=F | D=F | D=F | D=T | D=T |

| U=F | P(U|P,D) | P=F | P=T |
|-----|---------|-----|-----|
| U=T | 0.01 | | |
BN Specification

Conditional Probability Tables (CPDs)

| P(U|P,D) | P=F | P=T | P=F | P=T |
|---|---|---|---|---|
| D=F | | | | |
| D=F | | | | |
| D=T | | | | |
| D=T | | | | |

| U=F | | | | |
| U=T | 0.01 | 0.9 | | |

... he hasn’t partied too hard ...
BN Specification

Conditional Probability Tables (CPDs)

| P(U|P,D) | P=F | P=T | P=F | P=T |
|----------|-----|-----|-----|-----|
| D=F | | | | |
| U=F | | | | |
| U=T | 0.01| 0.9 | 0.9 | |
| D=T | | | | |

... and he hasn’t become demotivated.
BN Specification

Conditional Probability Tables (CPDs)

| \(P(U|P,D) \) | \(P=F \) | \(P=T \) | \(P=F \) | \(P=T \) |
|----------------|---------|---------|---------|---------|
| \(D=F \) | | | | |
| \(D=F \) | | | | |
| \(U=F \) | | | | |
| \(U=T \) | 0.01 | 0.9 | 0.9 | 0.999 |

Let alone both!
BN Specification

Conditional Probability Tables (CPDs)

| P(U|P,D) | P=F | P=T | P=F | P=T |
|---------|-----|-----|-----|-----|
| U=F | 0.99 | 0.1 | 0.1 | 0.001 |
| U=T | 0.01 | 0.9 | 0.9 | 0.999 |

Redundant...
BN Specification

Conditional Probability Tables (CPDs)

| P(H|P) | P=F | P=T |
|-------|-----|-----|
| H=F | | |
| H=T | | |

p(A|U) p(U|P,D) \(p(H|P) \) p(P) p(D)
BN Specification

Conditional Probability Tables (CPDs)

| P(H|P) | P=F | P=T |
|-------|-----|-----|
| H=F | | |
| H=T | | 0.2 |

No parties, no problems ... kind of.
The party lingers …
BN Specification

Conditional Probability Tables (CPDs)

| $P(H|P)$ | $P=F$ | $P=T$ |
|----------|-------|-------|
| $H=F$ | 0.8 | 0.1 |
| $H=T$ | 0.2 | 0.9 |

Redundant...
BN Specification

Conditional Probability Tables (CPDs)

| P(P) | p(A|U) | p(U|P,D) | p(H|P) | P(P) | P(D) |
|------|--------|----------|--------|------|------|
| P=F | | | | | |
| P=T | | | | | |
On a given school night, 20% chance of party.

<table>
<thead>
<tr>
<th>P(P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P=F</td>
</tr>
<tr>
<td>P=T</td>
</tr>
</tbody>
</table>
BN Specification

Conditional Probability Tables (CPDs)

<table>
<thead>
<tr>
<th>P(D)</th>
<th>D=F</th>
<th>D=T</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- $p(A|U)$
- $p(U|P,D)$
- $p(H|P)$
- $p(P)$
- $p(D)$
BN Specification
Conditional Probability Tables (CPDs)

<table>
<thead>
<tr>
<th>P(D)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>D=F</td>
<td>0.6</td>
</tr>
<tr>
<td>D=T</td>
<td>0.4</td>
</tr>
</tbody>
</table>

Not Bob’s dream job ...
Incorporating Evidence

At work, Bob’s boss is angry because he’s underperforming. Bob has a headache. Possibly Bob is just demotivated, possibly he went to a party last night and is exhausted. What is the probability that he went to a party last night?
Incorporating Evidence

\[p(H, P, A, U, D) = p(A|U) \cdot p(U|P, D) \cdot p(H|P) \cdot p(P) \cdot p(D) \]
Incorporating Evidence

\[p(H=t, P, A=t, U, D) = p(A=t | U) \ p(U | P, D) \ p(H=t | P) \ p(P) \ p(D) \]
Inference

At work, Bob’s boss is angry because he’s underperforming. Bob has a headache. Possibly Bob is just demotivated, possibly he went to a party last night and is exhausted. What is the probability that he went to a party last night?

\[p(P=t \mid H=t, A=t) \]
Inference

\[p(P = t | H = t, A = t) = \frac{p(P = t, H = t, A = t)}{p(H = t, A = t)} \]

\[= \frac{\sum_{U,D} p(P = t, H = t, A = t, U, D)}{\sum_{P,U,D} p(P, H = t, A = t, U, D)} \]

Using the CPDs, we can answer this now!

\[p(H, P, A, U, D) = p(A | U) \cdot p(U | P, D) \cdot p(H | P) \cdot p(P) \cdot p(D) \]
\[
\frac{\sum_{U,D} p(P = t, H = t, A = t, U, D)}{\sum_{P,U,D} p(P, H = t, A = t, U, D)}
\]

\[
\frac{\sum_{U,D} p(A = t | U)p(U | P = t, D)p(H = t | P = t)p(P = t)p(D)}{\sum_{P,U,D} p(A = t | U)p(U | P, D)p(H = t | P)p(P)p(D)}
\]

Profit! Or, at least, the probability \(p(P=t | H=t, A=t) \)
Look at the numerator as an example, and imagine H, P and A were actually not given...

\[\sum_{U,D} p(A|U)p(U|P,D)p(H|P)p(P)p(D) \]

Two-dimensional summation Five-dimensional table

This is fine for now, but what if we had LOTS more variables?
Look carefully at which variables are in which CPDs

Rearrange CPDs ...

\[
\sum_{U,D} p(A|U)p(U|P,D)p(H|P)p(P)p(D)
\]

\[
\sum_{U,D} p(H|P)p(P)p(A|U)p(U|P,D)p(D)
\]
Sneak preview

\[\sum_{U,D} p(H|P)p(P)p(A|U)p(U|P,D)p(D) \]

Rearrange summations …

\[p(H|P)p(P) \sum_{U} p(A|U) \sum_{D} p(U|P,D)p(D) \]

1D Summation

Three dimensional table
Sneak preview

1D Summation

\[p(H|P)p(P) \sum_U p(A|U) \sum_D p(U|P, D)p(D) \]

After inner summation ...

1D Summation

\[p(H|P)p(P) \sum_U p(A|U)\sigma(U, P) \]

Three dimensional table (D is gone!)
Belief networks enable …

- ... representation of complex joint probability distributions
- ... intuitive definition of conditional independence relationships
- ... managing complexity by decomposing the model
- ... possibly lowering of computational complexity
Homework (Optional)

• Exercise 3.1 (Party animal), 3.4, 3.6, 3.8.1

• For at least one of these: Implement in Python (Numpy) Naively (always possible), and with rearranged summations (may not be possible for each case).

• Have a quick look at Theano:

http://deeplearning.net/software/theano/

Port your Numpy code to run in Theano

My office A510, or e-mail, if you have any questions.